
Spell Checker for OCR
Yogomaya Mohapatra, Ashis Kumar Mishra, Anil Kumar Mishra

Department of Computer Science & Engineering, Orissa Engineering College
Bhubaneswar, Odisha, Pin-752050, India

Abstract— the implementation focuses a systematic approach
to the design the Spell Checker for OCR. In this a spelling
correction system, is designed specifically for OCR-generated
text, that selects candidate words through the information
gathered from multiple knowledge sources and automatically
replaces with the correct word. This system for text correction
based on approximate string matching, which uses a statistical
model that incorporates techniques like Confusion Matrix and
N-gram Analysis. The ability to accurately recognize
characters by scanning hard copy images is extremely
important for many forms of automated data processing and
has wide application. A great deal of effort has been devoted to
correcting errors which invariably result from commercially
available OCR devices. Besides error patterns like
substitution, transposition, insertion and deletion, emphasis is
given on modifiers and their positions with respect to the
consonants and conjuncts being modified. The system is
developed using file management system through java and
java Swing for the Windows operating system.

Keywords— Spell Checker, OCR, OCR-generated text,
Confusion Matrix, N-gram Analysis.

I. INTRODUCTION

Recent advances in printed document digitization and
processing led to large scale digitization efforts of legacy
printed documents producing document images. To enable
subsequent processing and retrieval, the document images
are often transformed to character-coded text using Optical
Character Recognition (OCR). Although OCR is fast, OCR
output typically contains errors. The introduced errors
adversely affect linguistic processing and retrieval of OCR
documents. Depending on the application of the optically
scanned text, large post processing effort can be necessary.
Since OCR is often used to move large amounts of text to
electronic form, the proofreading is a task both demanding
and dull. This makes the need for good tools of spell
checking and correction large and urgent. When a human
being reads a document, he uses a wide spectrum of
knowledge in making sense of what is written. On the other
hand, a machine when presented with optically digitized
text, in the absence of such knowledge, is prone to making
mistakes in reading the text. The goal of OCR is to
transform a document image into character-coded text. This
usual process is to automatically segment a document
image into character images in the proper reading order
using image analysis heuristics, the applying an automatic
classifier to determine the character codes that most likely
correspond to each character image, and then exploit
sequential context (e.g., preceding and following character
and a list of possible words) to select the most likely
character in each position. The character error rate can be
influenced by reproduction quality (e.g., original documents
are typically better than photocopies), the resolution at
which a document was scanned, or noise either inherent in

the document or introduced by the digitized process, any
mismatch between the instances on which the character
image classifier was trained and rendering of characters in
the printed document. Due to the noise, the machine
reading process may not be able to recognize a character
(reject error) or may recognize a character incorrectly
(substitution error). The noise some times also cause
character fusions (i.e. two or more character images merge
to appear as a single connected component) and or character
fragmentation (i.e. a character image is fragmented into
more than one sub image). The character fusion and
fragmentation may lead to substitution and rejection errors
besides making the word length shorter or longer than the
actual length. One of the common ways of correcting these
errors is to make tagged corpora of the language of the text
to check if the OCR output word is valid word. A still
higher level of knowledge such as grammar of the language
of the text may also employed to check the output of the
OCR. In this implementation, some of the issues concerning
correction of optically read Oriya character strings using an
Oriya tagged corpora is examined and a correction strategy
with results of experimentation is suggested. Spell checker
provide a ready mechanism for post processing the OCR
output for corrections. A spell checker takes into account
the process by which spelling errors usually get introduced
while suggesting the corrections. A spell checker tries to
model this process. A model is usually based on character
phonetic proximity, character key label proximity on the
key board, character interchange, missing character, an
extra character, character repetition etc. in another approach,
one estimates the likelihood of a spelling by it’s frequency
of occurrence that is derived from the transition
probabilities between characters. This requires a priori
statistical knowledge of the language [3]. One of the most
common used models incorporating the OCR process is a
statistical model that incorporates Confusion Matrix. The
confusion matrix captures the substitution errors that OCR
makes during the testing phase. The confusion matrix thus
obtained is representative only when tested over a large
sample space. It also depends upon the OCR methodology
and feature vector space classification. This confusion
matrix is used for hypothesizing the substitution errors and
suggesting correction. The new hypothesized words have to
be checked in the corpora. The correction process, while
correcting the substitution errors, has to take the individual
character confidence figures or probabilities into account.
The character fusion and fragmentation pose further
problems for the correcting process. The correction process
needs an appropriate criterion to select the most likely
candidate when more than one hypothesized words find
match with the corpora. A trie-structure has been employed
to obtain a set of next possible characters of the corpora
while traversing the OCR output word character by

Yogomaya Mohapatra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 91 - 97

www.ijcsit.com 91

character. In another approach, a string matching technique
is used to find the best match. It is reasonable to assume an
accuracy of 70% or more at the OCR level. For a word
length 3, on an average at least two character are correctly
recognized. The rest of character may or may not be in error.
The other approach, popularly used in the OCR problems,
is the N-gram approach. Construction of appropriate N-
gram from raw text data is an important issue in this
approach. The N-gram frequencies of the corrected text and
the optically scanned text were compared and N-grams that
showed large frequency differences between text versions
were displayed to the editor, together with a concordance of
all the occurrences of the N-gram. This allowed the editor
to formulate a correction rule for the N-gram under
consideration [1][2][3][4].

A BRIEF OVERVIEW OF INDIAN LANGUAGES

 The use a language for any application its characteristics
are required to be known. Once this is known, the
application can make use of languages in a most uniform
manner. Indian scripts have a very different structure and
have communality amongst them. They follow almost same
rules; but the way of representing them is different. Indian
Scripts have tremendous applications in day-to-day life.
These applications include Word Processing, Database
Management, machine Translation, OCR, etc. Once the
characteristics of these scripts are known, making use of
them for any of these scripts are known, making use of
them for any of these application is possible. These are 15
officially recognized Indian Scripts. These scripts are
broadly divided into two categories namely Brahmi scripts
and Perso-Arabic scripts consists of Devanagari,
Gurumukhi, Gujarati, Oriya, Bengali, Assamese, Telugu,
Kannada, Malayalam and Tamil. The Perso-Arabic scripts
include Urdu, Sindhi and Kashmiri. Devanagari script is
used by Hindi, Marathi and Sanskrit languages. The
characteristics of the languages within the family are quite
peculiar. They have a common phonetic structure, making
the common character set.
A.STRUCTURE OF INDIAN SCRIPTS
Since the origin of all these scripts is same, they share a
common phonetic structure. The alphabet may vary slightly
and also the graphical shapes. Using these characteristics a
transliteration facility between any Indian scripts is possible.
Typically the alphabets get divided in to following
categories: the Constants: all Indian scripts use 5 types of
constants groups called varga. Some vowel like ‘a’ is
included in the constant category. Each varga has 5
consonants, with primary and secondary pairs. The second
consonant in each pair is derived from the first consonant
with ‘h’ sound and have separate graphical representation.
Other consonants not present in this category are YA, RA,
LA, VA, SA, HA and invisible consonants like, RA (halant)
and (halant) RA, get formed differently.
Vowels: all the vowels are represented by separate symbols.
These vowels are placed on the consonants either in the
beginning or after the consonant. Each of these vowels is
pronounced separately. Typical vowels are:
Vowel: A, I, Ee, u, U, ru, Ee
Usage: Ka, Ki, Kee, Ku, KU, Kru, and Kee
Vowel: e, E, a, o, O, au, ao

Usage: Ke, KE, KA, Ko, KO, Kau, Kao
Halant: while forming the conjuncts use of broken
consonants is activated by halant. On mixing of two or
more consonants the shape of the conjunct varies. Many a
times halant is required to indicate the vowel-less ending.
e.g. Ramnathan.
Punctuations and Numerals: all the punctuations and
numerals are common between English and Indian Scripts.
OCR SYSTEM
When the page of a text is scanned into a PC, it is stored as
an electronic file made up of tiny dots, or pixels; it is not
seen by computer as text, but rather as a “picture of text”.
Word processors are not capable of editing bit map images.
In order to turn the group of pixels into editable words, the
image must go through a complex process known as
Optical Character Recognition (OCR). OCR research began
in the late 1950’s and since then, the technology has been
continually developed and refined. In the 1970’s and early
1980’s, OCR software was still very limited-it could only
work with certain typefaces and sizes. These days, OCR
software is far more intelligent, and can recognize
practically all typefaces as well as severely degraded
document images [3].
 One of the earliest OCR techniques was something called
matrix or pattern matching. OCR programs, which use the
pattern matching method, have bitmaps stored for every
character of each of different front and type sizes. By
comparing a database of stored bitmaps the program
attempts to recognize the letters.
Feature extraction was the next step in OCR’s development.
This attempted to recognize characters identifying their
universal features, the goal being to make OCR typeface-
independent. If all the character could be identified using
rules defining the way that loops and lines join each other,
then individually letters could be identified regardless of
their typeface. For example: the letter “a” is made from a
circle, a line on the right side and an arc over the middle. So,
if a scanned letter had these “features” it would be correctly
identified as the letter “a” by the OCR program. Feature
extraction was a step forward from matrix matching, but
actual results were badly affected by poor-quality print.
Extra makes on the page, or stain in the paper, had a
dramatic effect on accuracy. The elimination of such
“noise” became a whole research area itself. Once noise can
be identified, the reliable character fragments can then be
reconstructed into the most likely letter shapes.
A.DIFFERENT STAGES OF OCR SYSTEM
Optical recognition devices are currently used to convert
printed material into ASCII text for automated information
retrieval.OCR system consists of four major stages: (1) Pre-
processing (2) Segmentation (3) Feature Extraction (3)
Classification (4) Post-processing.
APPROACHES TO ERROR CORRECTION FOR OCR
The problem of detecting error in words and automatically
correcting them is a great research challenge. It’s solution
has enormous application potential in text and code editing,
computer Aided Authoring, Optical Character
Recognition(OCR), Machine Translation(MT), Natural
Language Processing(NLP), Database Retrieval and
Information Retrieval Interface, Speech Recognition, Text
to Speech and Speech to Text Conversion, Communication

Yogomaya Mohapatra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 91 - 97

www.ijcsit.com 92

System for the disabled (e.g. blind and deaf), Computer
Aided Tutoring and Language Learning, and Pen-Based
Computer Interface. The word error can belong to one of
the two distinct categories, namely nonword error and real-
word error[3][4].
Let a string of character separated by spaces or punctuation
marks be called a candidate string. A candidate string is
valid word if it has meaning. Else, it is nonword. By real
word error we mean a valid but not the intended word in the
sentence, thus making the sentence syntactically or
semantically ill-formed or in correct. In both cases the
problem is to detect the erroneous word and either suggest
correct alternatives or automatically replace it by the
appropriate word.
There are several issues to be addressed in the error
correction problem. The first issue concerns the error
patterns generated by different text generating media such
as typewriter and computer keyboard, typesetting and
machine printing, OCR system, speech recognizer output,
and of course, handwriting. Usually, the error pattern of one
media does not match with that of the other. The error
pattern issue of each media concerns the relative abundance
of insertion, deletion, substitution and transposition error,
run-on and split word error, single versus multiple character
error, word length effect, positional bias, character shape
effect, phonetic similarity effect, heuristic tendencies etc.
the knowledge about error pattern is necessary to model an
efficient spellchecker.
Another important issue is the tagged corpora which
concerns the size of the corpora, the problem of inflection
and creative morphology, word access techniques and so on.
The other approach, popularly used in OCR problems, is
the N-gram approach. Construction of appropriate N-gram
from raw text data is an important issue in this approach.
The detection of real word error needs higher level
knowledge compared to the error detection of nonword
error. In fact, detection of real word error is a problem that
needs NLP tool to solve. Several approaches based on
minimum edit distance; similarity key rules, N-grams,
probability and neural nets are proposed to accomplish the
task. Of these, minimum edit distance based approaches are
the most popular ones. The minimum edit distance is the
minimum number of editing operations (insertion, deletions
and substitutions) required to transform one text string to
another. The distance is also referred to as Damerau-
Levenshtein distance after the pioneers who proposed it for
text error correction. In its original form, minimum edit
distance algorithms require ‘m’ words. After comparisons,
the words with minimum edit distance are chosen as correct
alternatives. To improve the speed, a reverse minimum edit
distance is used where a candidate set of words is produced
by first generating every possible single error permutation
of the misspelled string and then checking the corpora for
any make up valid word. Spell checker are either stand-
alone applications capable of operating on a block of text,
or as a feature of a larger application, such as a word
processor, email client, electronic dictionary, or search
engine[11][12].
Simple spell checker operate at the word level, by
comparing each word level, by comparing each word in a
given input against a vocabulary (often referred to as a

dictionary). If the word is not found within the vocabulary,
it is designated erroneous, and algorithms may be run to
detect which word the user most likely meant to type. One
simple such algorithm is listing words from the dictionary
with a small Levenshtein distance from the typed word.
As already outlined, a spell checker customarily consists of
two parts: (1) A set of routines for scanning text and
extracting words (2) A corpora against which the words
found in the text are compared.
 An interactive spell checker can also be helpful in
correction. In the simplest case, the checkers remember all
tokens which the user has indicated should be replaced and
the words with which the tokens are to be replaced. After
the first such replacement, future occurrences of the
misspelled token can be automatically corrected. A similar
approach is including common misspellings in the
dictionary with the correct spelling. This approach has not
been included in any current spell checkers, probably
because of the lack of an obvious source of known
misspellings and the low frequency of even common
misspellings. 80% of all spelling errors are result of:

 Transposition of two letters
 One letter extra
 One letter missing
 One letter wrong

The basic algorithm for correction is for each token which
is not found in the corpora, construct a list of all words
which could produce this token by one of the above rules.
These are called candidate spellings. If the list has exactly
one candidate, guess that word. If the list contains several
words, then N-gram approach is applied. Transpositions can
be detected by transposing each pair of adjacent characters
in the token, one at a time, and searching for the resulting
token. If the resulting token is found, it is a candidate and is
added to the list. For a token of WL characters, this requires
WL-1 searches of the dictionary. Checking for extra letter
requires deleting each character one at a time, and searching
for the resulting token. This requires additional WL
searches. Most tokens are short so this need not be
expensive. The remaining two types of errors (one missing
letter and one wrong letter) are difficult to detect. A
search with a match any character feature cannot stop when
the first word match is found, but most continue, since
many words may match the token. This requires WL+1
searches for a missing letter and WL searches for a wrong
letter error.
For a wrong letter in the third or subsequent character,
all words which are candidates must exist on the same chain
that the suspect token hashes to. Hence, each entry on that
chain is inspected to determine if the suspected differs from
the entry by exactly one character. This is accomplished by
an exclusive-or (XOR) between the suspect and the
dictionary. Then a JFFO instruction selects the first nonzero
byte in the XOR. This byte is zeroed and if the result is all
zero, then the dictionary words differs from the suspect in
only one letter. All such words are listed at CANDBF,
where they can be inspected later. For a wrong letter in the
first or second character, the program tries varying the
second later through all 26 possible values, searching for an
exact match. Then all 26 possible values of the first letter
are tried, after setting the second letter to its original value.

Yogomaya Mohapatra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 91 - 97

www.ijcsit.com 93

This means that 52 more chains are searched for possible
matches. To correct transposed letters, all combinations of
transposed letters are tried. There is only WL-1 such
combinations, so it is fairly cheap to do this. To correct one
extra letter, WL copies of the token are made, each with
some letter removed. Each of these is looked up in the
dictionary. This takes WL searches. To correct one missing
letter, WL+1 copies of the token are made, each time
inserting a NULL character in a new position in the suspect.
The NULL character is never part of any word, so the
suspect token augmented by an embedded NULL can be
thought of as a word with one wrong letter (the NULL).
Then algorithm for matching one wrong letter is used. If
the first character is omitted. Counting, we find that a total
of 3*WL+103 chains must be searched, with WL such
chain searches requiring a special algorithm to look for
(exactly) one wrong character.
The implementation describes a new automatic spelling
correction approach to deal with OCR generated errors. The
method used is based on three principles.

 Approximate string matching between the
misspellings and the term occurring in the corpora.

 The use of confusion matrix, which contains
information inherently specific to the nature of errors
caused by the particular OCR device.

 The other approach, popularity used in OCR
problems, is the N-gram approach. Construction of
appropriate N-gram from raw text data is an important issue
in this approach.
A .DETAILED DESCRIPTION OF THE PROCESS
The system includes a document scanning device, which
may comprise an optical scanner or a facsimile machine.
Scanning device scans an input original document and
generates an image signal that is representative of the
characters appearing on document. After performing an
OCR algorithm on the image signal, OCR module creates
an electronic document that includes recognized words
intended to correspond exactly, in spelling and in
arrangement, to the words of the original document.
Although the recognized words of the electronic document
should match all the corresponding words of the original
document, a complete match some times does not occur.
Any incorrect words in the electronic document that is
flagged by one of these algorithms as incorrect is referred to
as a misrecognized word. The spell checking algorithm is
capable of generating at least one alternative word for each
incorrect word. These alternative words are referred to as
reference words, in the next step is to select the reference
word that is most likely the correct word for replacing the
identified incorrect word. This selection is accomplished by
calculating a replacement word value for each reference
word. The next step replaces incorrect word with reference
word that has been assigned the highest replacement word
value [3][4].

CONFUSION MATRIX

In the field of artificial intelligence a confusion matrix is a
visualization tool typically used in supervised learning (in
unsupervised learning it is typically called a matching
matrix).

Each column of the matrix represents the instances in a
predicted class, while each row represents the instances in
an actual class. One benefit of confusion matrix is that it is
easy to see if the system is confusing two classes (i.e.
commonly mislabelling one as another) [5].
When the data set is unbalanced (when the number of
samples in different classes vary greatly) the error rate of a
classifier is not representative of the true performance of the
classifier. This can easily be understood by an example. If
there are for example 990 samples from class 1 and only 10
samples from class 2, the classifier can easily be biased
towards class 1. If the classifier classifies all the samples as
class 1, the accuracy will be 99%. This is not a good
indication of the classifier’s true performance. The
classifier had a 100% recognition rate for class 1 but a 0%
recognition rate for class 2.

N-GRAM APPROACH

N-grams are sequences of characters or words extracted
from a text or an N-gram is a sub-sequence of n items from
a given sequence. N-gram are used in various areas of
statistical natural language processing and genetic sequence
analysis. The items in question can be letters, words or base
pairs according to the application. An N-gram of size 1 is a
“unigram”; size 2 is a “bigram”(or, more etymologically
sound but less commonly used , a “digram”); size 3 is a
“trigram”; and size 4 or more is simply called an “N-gram”.
Some language models built from N-gram are “(n-1)-order
Markov models”.
N-grams can be divided in two categories: (1) character
based and (2) word based. A character N-gram is a set of n
consecutive characters extracted from a word. The main
motivation behind this approach is that similar words will
have a higher proportion behind this approach is that
similar words will have a high proportion of N-grams in
common. Typical values for n are 2 or 3; these correspond
to the use of bigrams or trigrams, respectively. There are
n+1 such bigrams and n+2 such trigram in a word
containing n characters. Character based N-gram are
generally used in measuring the similarity of character
strings. Spell checker, stemming, OCR error correction are
some of the applications which use character based N-
grams. Word N-grams are sequences of n consecutive
words extracted from text. Word level N-gram models are
quite robust for modelling language statistically as well as
for information retrieval without much dependency on
language[4][5][6].

N-GRAM BASED LANGUAGE MODELLING

Informally speaking, a language is modelled by making use
of linguistic and common sense knowledge about language.
Formally, a language model is a probability distribution
over word sequences or word N-gram. Specifically, a
language model (LM) estimates the probability of the next
word given preceding words. A word N-gram language
model uses the history of n-1 immediately preceding words
to compute the occurrence probability P of the current word.
The value of N is usually limited to 2 (bigram model) or 3
(trigram model). If the vocabulary size is M words, then to
provide complete coverage of all possible N word
sequences the language model needs to consist of MN-

Yogomaya Mohapatra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 91 - 97

www.ijcsit.com 94

grams (i.e. sequence of N words). This is probability
expensive (e.g. a bigram language model for a 40,000
words vocabulary will require 1.6 x 109 bigram pairs), and
many such sequences have negligible probabilities.
Obviously, it is not possible word pairs. Typically, an N-
gram LM lists only the most frequently occurring word
pairs, and uses backoff mechanism to compute the
probability when desired word pair is not found.
When used for language modelling independence
assumptions are made so that each word depends only on
the last n words. The Markov model is used as an
approximation of the true underlying language. This
assumption is important because it massively simplifies the
problem of learning the language model from data. In
addition, because of the open nature of the language, it is
common to group words unknown to the language model
together [3][4].
N-gram models are widely used in statistical natural
language processing. In speech recognition, phonemes and
sequences of phonemes are modeled using a N-gram
distribution. For parsing, words are modeled such that each
N-gram is composed of n words. For language recognition,
sequences of letters are modeled for different languages.
For a sequence of words, (for example “the dog smelled
like a skunk”), the trigrams would be: “the dog smelled”,
“dog smelled like”, “smelled like a”, and “like a skunk”.
For sequences of character, the 3-grams(sometimes referred
to as “trigram”) that can be generated from “good morning”
are “goo”, “ood”, “od ”, “d m”, “ mo”, “mor” and so forth.
Some practitioner’s pre-process strings to remove spaces,
most simply collapse whitespace to a single space while
preserving paragraph marks. Punctuation is also commonly
reduced or removed by pre-processing. N-grams can also be
used for sequences of words or, in fact, for almost any type
of data. N-gram models are often criticized because they
lack any explicit dependency range is (n-1) tokens for an
N-gram model, it is also true that the effective range of
dependency is significantly longer than this although long
range correlations drop exponentially with distance for any
Markov model[9][10].
The hypothesis is that differences in observed frequency
between correct text and optically scanned text for a
character N-gram would indicate that the N-gram in the
question was incorrectly recognized by the scanning
process. The N-gram frequencies of the corrected text and
the optically scanned text were compared and N-grams that
showed large frequency differences between text versions
were displayed to the editor, together with a concordance of
all the occurrences of the N-gram. This allowed the editor
to formulate a correction rule for the N-gram under
consideration. Two sets of rules were formulated, one with
rules that replaced a character trigram with another string of
optional length, the other with rules that replaced a string of
optional length with another. The rules that rewrite trigrams
were generated with the support of a graphical tool that
generated a list of suspect trigrams, for each trigram
showed a concordance of all the occurrences of the trigram,
and with a correction given by the user, could generate a
correction rule. The rules were then used to correct both
the article that has been used to generate the rules and the
other to see if the rules were useful in another context than

the one they had been generated in. the number of errors
generated in the correction process were counted separately
to keep track of over correction[12].

N-GRAMS FOR APPROXIMATE MATCHING

N-grams can also be used for efficient approximate
matching. By converting a sequence of items to a set of N-
grams, it can be embedded in a vector space (in other words,
represented as a histogram), thus allowing the sequence to
be compared to other sequences in an efficient manner. For
example, if we convert string with only letters in the
English alphabet into 3-grams, we get a 263 – dimensional
space(the first dimension measures the number of
occurrences of “aaa”, the second “aab”, and so forth for all
possible combinations of three letters). Using this
representation, we lose information about the string. For
example, both the string “abcba” and “bcbab” give rise to
exactly the same 2-grams. However, we know empirically
that if two strings of real text have a similar vector
representation (as measured by cosine distance) then they
are likely to be similar. Other metrics have also been
applied to vectors of N-grams with varying, and sometimes
better results [5][6].

N-GRAM APPLICATIONS

N-gram finds use in several areas of computer science,
computational linguistics, and applied mathematics.
They have been used to:

 Design kernel allows machine learning algorithms such
as support vector machines to learn from string data.

 Find like candidates for the correct spelling of a
misspelled word.

 Improve compression in compression algorithms were
a small area of data requires N-grams of greater length.

 Assess the probability of a given word sequence
appearing in text of a language of interest in pattern
recognition systems, speech recognition, OCR (optical
character recognition), intelligent character
recognition(ICR), machine translation and similar
applications.

 Improve retrieval in formation retrieval system when it
is hoped to find similar “document” (a term for which
the conventional meaning is sometimes stretched,
depending on the data set) given a single query
document and a database of reference documents.

 Improve retrieval performance in genetic sequence
analysis as in the BLAST family of programs.

 Identify the language a text is in or the species a small
sequence of DNA was taken from.

 Predict letters or words at random in order to create
text, as in the dissociated press algorithm.

.DETECTING MISSSPELLED WORDS IN ORIYA

CORPORA USING SYLLABLE N-GRAM

FREQUENCIES

Here, a system is designed and implemented which decides
whether or not a word is misspelled in Oriya Corpora.
Firstly, a database of syllable, bigram and trigram

Yogomaya Mohapatra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 91 - 97

www.ijcsit.com 95

frequencies is constructed using the syllables that are
derived from different Oriya corpora. Then, the system
takes words in Oriya text as an input and computes the
probability distribution of words using syllable, bigram and
trigram frequencies from the database. If the probability
distribution of a word is zero, it is decided that this word is
misspelled. For testing the system, two text databases are
constructed with the same words. One text database has 685
misspelled words. The other has 685 correctly spelled
words. The words from these text databases are taken as
input for the system. The system produces two results for
each word: “Correctly spelled word” or “Misspelled word”.
The system that is designed with monogram and bigram
frequencies has 86% success rate for the misspelled words
and has 88% success rate for the correctly spelled words.
According to the system designed with bigram and trigram
frequencies, there is 97% success rate for the misspelled
words and there is 98% success rate for the correctly
spelled words[6][7][8][9].

In automatic spelling correction, the probability of the
sequence of characters Y produced by a possibly imperfect
typist given the hypothesized word series W is estimated by
using a mistyping model for the word series W.

In these types of applications, the probability of the word
series W can be modelled according to the equation:
P (W1

k) = P (W1) P (W2|W1)…………..P (Wk|W1
k-1) (2)

Where W1
k represents a series of words W1, W2... Wk.

In the conditional probability P (Wk|W1

k-1) the term W1
k-1

is called the history or the predictor feature and represents
the initial (k-1) words of the series. Each word in the
history is a predictor word. The term Wk is called the
predicted feature or the category feature [12].

The mechanism for estimating the conditional probabilities
in Equation (2) is a language model. A language model
estimates the conditional probabilities from limited training
text (training data). The larger the training text, and the
larger the number of parameters in the language model, the
more accurate and precise are the predictions from the
language model [11][12].

As stated above, a purpose of language model is to assign
probabilities to a word series, e.g., the probability of a
trigram W1 W2 W3; given that bigram W1 W2 has just
occurred.

Recently the successful model is the trigram model. The
model is based upon deleted interpolation. This model
requires the storage of records that identify: (a) a trigram id
W1 W2 W3 and its count C (W1 W2 W3); (b) a bigram
identification W2 W3 and its count C (W2 W3); and(c) a
unigram identification W3 and its count C (W3). The count
of a given trigram is the number of occurrences of this
given trigram in the training data.

(1) Misspelled Oriya Text(Output of OCR)

 (2)Displaying the Suggestion list of Misspelled words

 (3)Frequency Calculation of Bigrams

Yogomaya Mohapatra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 91 - 97

www.ijcsit.com 96

 (4)Frequency Calculation of Bigrams

 (5) Correction phase under Execution head

 (6) Output after Correction Phase

CONCLUSIONS

Research into algorithmic techniques for detecting and
correcting spelling errors in text has a long, robust history
in computer science. As an amalgamation of the traditional
fields of the Artificial intelligence, pattern
Recognition ,String Matching, Computational Linguistics,
and others, this fundamental problem in information science
has been studied from the early 1960’s to the present. As
other technologies matured, this area of research has
become more important than ever. This statistical and
language independent nature of N-gram model seems
suitable for dealing with a multilingual collection of texts.
Improving retrieval efficiency from Indian language
document by N-gram will be my future effort. The use of
N-gram language modeling for information retrieval, text

categorization and Machine Translation has to be
investigated.
The development of valuable system “Spellchecker for
OCR” was of unique experience. In course of carrying out
the project work, I found myself in growing field of
software development area. There is always a room for
improvement in any S/W package however efficient it may
be. But the most important things are that the system should
be flexible enough for future modification.

The system “Spellchecker for OCR” has been designed in
such a manner that modifications may be incorporated
without affecting the behavior and working of any modules.
Work can also be extended to context dependent error
correction research that requires information from the
surrounding context for detection and correction. The
preference is given to the mappings that are known OCR
confusions. The evaluation results cover a variety of
corpora and shows that post correction improves the quality
even for scanned texts with a very small number of OCR
errors. There are two important points to be considered in
future work. First the influence of the sentence context
ranking to the correction result should be studied in more
depth. It is desirable to complete a series of experiments in
order to clarify the dependence on the domain and language
used and how much improvements it yields. The second
point is the further exploration of the correction based on
the output of two different OCR engines. Further
development and evaluation of this technique would be
very valuable for the whole OCR field.

REFERENCES
[1] Sandor Dembitz, Peter Knezevic Mladen Sokele,” Developing a

Spell Checker as an Expert System”, Journal of Computing and
Information Technology-ICCIT, 2004.

[2] Dustin Boswell, “Language Models for Spelling Correction”,
CSE256, Spring 2004.

[3] Li Zhwang, TaBao, Xiaoyan Zhu, Chunheng Wang, Satoshi Naoi
“ OC R spelling Check Approach Based on Statistical Language
Models”, International Conference on Systems, Man and Cybernetics,
Hague, Netherlands, IEEE, Oct 2004.

[4] Gerasimos Potamianos, Frederick Jelinek, “A Study of N-gram and
Decision tree Letter Language Modeling Methods”, Speech
Communication, 1998.

[5] K. Kukich, “Techniques for Automatically Correcting Words in
Text”, ACM Computing Surveys, 1992.

[6] Munirul Mansur, Analysis of N-gram Based Text Categorization in
a Newspaper Corpus, Undergraduate thesis (Computer Science)
BRAC University, August 2006.

[7] William B. Canvar. John M. Trenkle “N-gram based Text
Categorization” Proceeding of SDAIR-94, 3rd Annual Symposium on
Document Analysis and Information Retrieval.

[8] R.Anglell, G. Freund, and P.Willett, “Automatic spelling correction
using a trigram similarity measure”, Information Processing &
Management, 19,(4),305-316, (1983).

[9] C.Y.Suen, “N-gram statistics for Natural Language Understanding
and Text processing”, IEEE Trans. On Pattern Analysis & Machine
Intelligence. PAMI, 1(2), pp.164-172, April1979..

[10] Naira Khan, Md. Tarek Habib, Md. Jahangir Alan, Rajib Rehman,
Naushad Uzzaman and Mumit Khan, “History (forward N-gram) or
Future (Backward N-gram)? Which model to consider for N-gram
analysis? Proc. Of 9th international Conference on computer and
information Technology (ICCIT 2006), December 2006.

[11] Research paper on post editing through approximate global
correction By…. Julie Borsach (Information Science and Research
Institute).

[12] Bruno Martins, Mario J.Silva, “Spelling Correction for Search
Engine Queries”, 2004.

Yogomaya Mohapatra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 91 - 97

www.ijcsit.com 97

